Numerical Study of the Systematic Error in Monte Carlo Schemes for Semiconductors
نویسندگان
چکیده
The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field calculations, vanishes sufficiently fast. The error due to the approximation of the trajectories of particles depends on the ODE solver used in the algorithm. It is negligible compared to the other sources of time step error, when a second order Runge-Kutta solver is used. The error related to the approximate scattering mechanism is the most significant source of error with respect to the time step. Mathematics Subject Classification. 82D37, 65C05. Received July 30, 2008. Revised April 6, 2009. Published online August 26, 2010.
منابع مشابه
Numerical Methods of Option Pricing for Two Specific Models of Electricity Prices
In this work, two models are proposed for electricity prices as energy commodity prices which in addition to mean-reverting properties have jumps and spikes, due to non-storability of electricity. The models are simulated using an Euler scheme, and then the Monte-Carlo method is used to estimate the expectation of the discounted cash-flow under historical probability, which is considered as the...
متن کاملRobustness and applicability of Markov chain Monte Carlo algorithms for eigenvalue problems
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both – systematic and probability error are presented. It is shown that the values of both errors ca...
متن کاملA New Ridge Estimator in Linear Measurement Error Model with Stochastic Linear Restrictions
In this paper, we propose a new ridge-type estimator called the new mixed ridge estimator (NMRE) by unifying the sample and prior information in linear measurement error model with additional stochastic linear restrictions. The new estimator is a generalization of the mixed estimator (ME) and ridge estimator (RE). The performances of this new estimator and mixed ridge estimator (MRE) against th...
متن کاملEvaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation
Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...
متن کاملAnalysis of the Monte-Carlo error in a hybrid semi-Lagrangian scheme
We consider Monte-Carlo discretizations of partial differential equations based on a combination of semi-lagrangian schemes and probabilistic representations of the solutions. We study the Monte-Carlo error in a simple case, and show that under an anti-CFL condition on the time-step δt and on the mesh size δx and for N the number of realizations reasonably large, we control this error by a term...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010